On the global version of Euler-Lagrange equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys. A: Math. Gen. 367301
(http://iopscience.iop.org/0305-4470/36/26/306)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.86
The article was downloaded on 02/06/2010 at 16:19

Please note that terms and conditions apply.

On the global version of Euler-Lagrange equations

R E Gamboa Saraví ${ }^{1}$ and J E Solomin ${ }^{2}$
${ }^{1}$ Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
${ }_{2}^{2}$ Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
E-mail: quique@fisica.unlp.edu.ar

Received 11 December 2002, in final form 21 May 2003
Published 18 June 2003
Online at stacks.iop.org/JPhysA/36/7301

Abstract

The introduction of a covariant derivative on the velocity phase space is needed for a global expression of Euler-Lagrange equations. The aim of this paper is to show how its torsion tensor turns out to be involved in such a version.

PACS numbers: 45.10.Na, 02.40.Yy

An increasing attention has been recently paid to coordinate-free formulations of motion equations in classical mechanics (see for instance [1,2] and references therein). In this work we write down intrinsic Euler-Lagrange equations and show the appearance of a torsion term. Furthermore, we shall see that this term should also be present in the horizontal LagrangePoincaré equations considered in [1, 2], if the torsion of the chosen derivative does not vanish.

It is worth noting that covariant derivatives with non-vanishing torsion naturally arise in several branches of physics; namely dynamics with nonholonomic constraints [3, 4], E Cartan's theory of gravity (see for instance [5]) and modern string theories (see for example [6]), among others.

Let us consider a physical system with configuration manifold Q and Lagrangian $L(q, \dot{q}): T Q \rightarrow \mathbb{R}$ (for this geometrical setting, see for instance [7]).

If a coordinate-free characterization of the Euler-Lagrange equations associated with the system is required a covariant derivative D must be introduced to $T Q$, for $\frac{\partial L}{\partial q}$ is involved (see for instance [8]). Once such D is chosen, $\frac{\mathrm{D} L}{\mathrm{D} q}$ is defined in the standard way

$$
\begin{equation*}
\frac{\mathrm{D} L}{\mathrm{D} q}\left(q_{0}, \dot{q}_{0}\right)=\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} L \circ \gamma(\lambda) \tag{1}
\end{equation*}
$$

with $\gamma(\lambda)=\left(q(\lambda), \dot{q}_{0 \|}(\lambda)\right), q(0)=q_{0}, \dot{q}(0)=\dot{q}_{0}$ and $\dot{q}_{0 \|}(\lambda)$ the parallel transport of \dot{q}_{0} along $q(\lambda)$.

Moreover, an associated covariant derivative on $T^{*} Q$, that we will also denote by D , is naturally defined through the Leibnitz rule: for any curves $\alpha(t)$ and $v(t)$ in $T^{*} Q$ and $T Q$, respectively

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\alpha(t), v(t)\rangle=\left\langle\frac{\mathrm{D} \alpha(t)}{\mathrm{D} t}, v(t)\right\rangle+\left\langle\alpha(t), \frac{D v(t)}{\mathrm{Dt}}\right\rangle \tag{2}
\end{equation*}
$$

where \langle,$\rangle denotes the pairing between T^{*} Q$ and $T Q$.
It is worth noting that $\frac{\partial}{\partial \dot{q}}$ has a coordinate-free sense: it is the derivative along the fibre.
Proposition 1. Let D be an arbitrary covariant derivative on TQ. Then the coordinate-free expression of the Euler-Lagrange equations is

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\mathrm{D} L}{\mathrm{D} q}=\frac{\partial L}{\partial \dot{q}} T(\dot{q}(t),) \tag{3}
\end{equation*}
$$

where $T($,$) is the torsion tensor of D$.

Proof. The curve $q(t)$ is a solution of the Euler-Lagrange equations if and only if it is a critical point for the action

$$
\begin{equation*}
S=\int_{t_{0}}^{t_{1}} L(q(t), \dot{q}(t)) \mathrm{d} t \tag{4}
\end{equation*}
$$

for variations of the curves such that q_{0} and q_{1} remain fixed. That is, for each $q(t, \lambda)$: $\left[t_{0}, t_{1}\right] \times(-\varepsilon, \varepsilon) \rightarrow Q$ such that $q(t, 0)=q(t), q\left(t_{0}, \lambda\right)=q\left(t_{0}\right)$ and $q\left(t_{1}, \lambda\right)=q\left(t_{1}\right)$,

$$
\begin{equation*}
\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} \int_{t_{0}}^{t_{1}} L(q(t, \lambda), \dot{q}(t, \lambda)) \mathrm{d} t=\int_{t_{0}}^{t_{1}} \delta L(q(t), \dot{q}(t)) \mathrm{d} t=0 \tag{5}
\end{equation*}
$$

where $\delta L(q(t), \dot{q}(t))=\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=0} L(q(t, \lambda), \dot{q}(t, \lambda))$.
But

$$
\begin{align*}
\delta L(q(t), \dot{q}(t))= & \lim _{\lambda \rightarrow 0} \frac{L(q(t, \lambda), \dot{q}(t, \lambda))-L(q(t, 0), \dot{q}(t, 0))}{\lambda} \\
= & \lim _{\lambda \rightarrow 0} \frac{L(q(t, \lambda), \dot{q}(t, \lambda))-L(q(t, \lambda), \dot{q} \|(t, \lambda))}{\lambda} \\
& +\lim _{\lambda \rightarrow 0} \frac{L\left(q(t, \lambda), \dot{q}_{\|}(t, \lambda)\right)-L(q(t, 0), \dot{q}(t, 0))}{\lambda} \tag{6}
\end{align*}
$$

where $\dot{q}_{\|}(t, \lambda)$ is the parallel translate of the vector $\dot{q}(t, 0)$ along the curve $\left.q(t, \lambda)\right|_{\text {fixed } t}$ (see figure 1).

Then

$$
\begin{equation*}
\delta L(q(t), \dot{q}(t))=\frac{\partial L}{\partial \dot{q}} \mathrm{D}_{\delta q(t)} \dot{q}(t)+\frac{\mathrm{D} L}{\mathrm{D} q} \delta q(t) \tag{7}
\end{equation*}
$$

where we have denoted

$$
\begin{equation*}
\delta q(t)=\left.\frac{\partial q(t, \lambda)}{\partial \lambda}\right|_{\lambda=0} \quad \text { and } \quad \dot{q}(t)=\left.\frac{\partial q(t, \lambda)}{\partial t}\right|_{\lambda=0} \tag{8}
\end{equation*}
$$

By definition of the torsion tensor $T($,$) , we have$

$$
\begin{equation*}
T(\dot{q}(t), \delta q(t))=\mathrm{D}_{\dot{q}(t)} \delta q(t)-\mathrm{D}_{\delta q(t)} \dot{q}(t)-[\dot{q}(t), \delta q(t)] \tag{9}
\end{equation*}
$$

Thus, by using (2) and taking into account that $[\dot{q}(t), \delta q(t)]$ vanishes, we have

$$
\begin{align*}
\delta L(q(t), \dot{q}(t)) & =\frac{\partial L}{\partial \dot{q}} \mathrm{D}_{\dot{q}(t)} \delta q(t)+\frac{\mathrm{D} L}{\mathrm{D} q} \delta q(t)-\frac{\partial L}{\partial \dot{q}} T(\dot{q}(t), \delta q(t)) \\
& =\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}} \delta q(t)\right)-\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q(t)+\frac{\mathrm{D} L}{\mathrm{D} q} \delta q(t)-\frac{\partial L}{\partial \dot{q}} T(\dot{q}(t), \delta q(t)) . \tag{10}
\end{align*}
$$

Figure 1. The vector $\dot{q}_{\|}(t, \lambda)$ is the parallel transport of the vector $\dot{q}(t, 0)$ along the dashed curve.

Now integrating along the curve $q(t)$ we finally get

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q(t)-\frac{\mathrm{D} L}{\mathrm{D} q} \delta q(t)=\frac{\partial L}{\partial \dot{q}} T(\dot{q}(t), \delta q(t)) \tag{11}
\end{equation*}
$$

Remark 1. Of course, regardless of the covariant derivative D we introduced, in any coordinate patch the Euler-Lagrange equations always read

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right)-\frac{\partial L}{\partial q^{i}}=0 \tag{12}
\end{equation*}
$$

Remark 2. As well known (e.g., [8]), a torsion-free D can always be chosen. It is obvious that for such a connection, global Euler-Lagrange equations read

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\mathrm{D} L}{\mathrm{D} q}=0 \tag{13}
\end{equation*}
$$

So in this case, the global expression can be obtained merely by replacing the usual derivatives by D in (12).

Remark 3. A similar result holds for the horizontal Lagrange-Poincaré equations considered in $[1,2]$. One of the goals of these references is to analyse the intrinsic meaning of motion equations for constrained systems with symmetries. Let us recall that, in such a system, the Lagrangian L and the constraints remain invariant under the lifting to $T Q$ of a suitable action of a Lie group G on Q. A connection A, related to the constraints, is introduced on the principal bundle $Q \xrightarrow{\pi} Q / G$. If $\tilde{\mathfrak{g}}$ is the adjoint bundle to the principal bundle Q, the connection A yields an isomorphism α between $T Q / G$ and the Whitney sum $T(Q / G) \oplus \tilde{\mathfrak{g}}$ in the following way

$$
\begin{equation*}
\alpha_{A}[q, \dot{q}]_{G}=(x, \dot{x}, \tilde{v})=\pi_{*}(q, \dot{q}) \oplus[q, A(q, \dot{q})]_{G} . \tag{14}
\end{equation*}
$$

Now, one can define the reduced Lagrangian $\ell: T(Q / G) \oplus \tilde{\mathfrak{g}} \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
\ell(x, \dot{x}, \tilde{v})=L(q, \dot{q}) \tag{15}
\end{equation*}
$$

A variation δq of a curve in Q is said to be horizontal if $A(\delta q)=0$. In this case, the corresponding variation $\alpha(\delta q(t))$ of the curve $\alpha(q(t))$ in $T(Q / G) \oplus \tilde{\mathfrak{g}}$ is [1]

$$
\begin{equation*}
\alpha(\delta q(t))=\delta x \oplus \tilde{B}(\delta x, \dot{x}) \tag{16}
\end{equation*}
$$

where \tilde{B} is the $\tilde{\mathfrak{g}}$-valued two-form on Q / G defined by

$$
\begin{equation*}
\tilde{B}\left([q]_{G}\right)(X, Y)=\left[q, B\left(X^{h}(q), Y^{h}(q)\right)\right]_{G} \tag{17}
\end{equation*}
$$

with X^{h}, Y^{h} the horizontal lifts to Q of X and Y, and B the curvature of the connection A.
The horizontal Lagrange-Poincaré equations for L are defined as the Euler-Lagrange ones for ℓ restricted to horizontal variations δq. A coordinate-free version of them can be written down by introducing an arbitrary covariant derivative D on $T(Q / G)$ and using the covariant derivative $\tilde{\mathrm{D}}$ induced by A on $\tilde{\mathfrak{g}}$.

Under the implicit assumption that the torsion of D vanishes, it is shown in [1, 2] that, for horizontal variations δq,

$$
\begin{equation*}
\delta \int_{t_{0}}^{t_{1}} L(q(t), \dot{q}(t)) \mathrm{d} t=0 \tag{18}
\end{equation*}
$$

if and only if the following horizontal Lagrange-Poincaré equations hold

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial \ell}{\partial \dot{x}}\right)(x, \dot{x}, \tilde{v})-\frac{\mathrm{D} \ell}{\mathrm{D} x}(x, \dot{x}, \tilde{v})=-\left\langle\frac{\partial \ell}{\partial \tilde{v}}, \tilde{B}(x)(\dot{x}, .)\right\rangle . \tag{19}
\end{equation*}
$$

It is easy to see that, for an arbitrary covariant derivative D on $T(Q / G)$, its torsion tensor T must be taken into account in the previous equations. Arguing as above one gets

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{\partial \ell}{\partial \dot{x}}\right)(x, \dot{x}, \tilde{v})-\frac{\mathrm{D} \ell}{\mathrm{D} x}(x, \dot{x}, \tilde{v})=-\left\langle\frac{\partial \ell}{\partial \tilde{v}}, \tilde{B}(x)(\dot{x}, .)\right\rangle+T(\dot{q}, .) \tag{20}
\end{equation*}
$$

Assuming as in $[1,2]$ the torsion-free requirement for D , the last term clearly vanishes and we recover the horizontal Lagrange-Poincaré equations found in those references.

Again, in any coordinate patch, the expression of horizontal Lagrange-Poincaré equations is independent of the choice of the covariant derivative D .

Remark 4. When considered as a map of the second-order tangent bundle $T(T Q)$ to $T^{*} Q$, the Euler-Lagrange operator turns out to be intrinsic without any choice of connection (e.g., [9]). The need for connections appears if one prefers to stay in the framework of tangent bundles, as it is usually done, and not to deal with second-order ones.

Acknowledgment

This work was partially supported by CONICET, Argentina.

References

[1] Cendra H, Marsden J E and Ratiu T S 2001 Lagrangian reduction by stages Mem. Am. Math. Soc. 722152
[2] Cendra H, Marsden J E and Ratiu T S 2001 Geometric mechanics. Lagrangian reduction, and nonholonomic system Mathematics Unlimited-2001 and Beyond ed B Engquist and W Schmid (Berlin: Springer) pp 221-73
[3] Vershik A M and Faddeev L D 1981 Sel. Math. Sov. 1339
[4] Vershik A M and Ya Gershkovich V 1994 Non-holonomic Riemannian manifolds Dynamical Systems 7 (Encyclopaedia of Mathematics, vol 16) (Berlin: Springer)
[5] Hehl F W, von der Heyde P and Kerlick G D 1976 Rev. Mod. Phys. 48393
[6] Polchinski J 1998 String Theory vol 2 (Cambridge: Cambridge University Press)
[7] Abraham R and Marsden J E 1967 Foundations of Mechanics (New York: Benjamin)
[8] Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol 1 (New York: Wiley)
[9] Marsden J E and Ratiu T S 1994 Introduction to Mechanics and Symmetry (New York: Springer)

