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Abstract
The introduction of a covariant derivative on the velocity phase space is needed
for a global expression of Euler–Lagrange equations. The aim of this paper is
to show how its torsion tensor turns out to be involved in such a version.

PACS numbers: 45.10.Na, 02.40.Yy

An increasing attention has been recently paid to coordinate-free formulations of motion
equations in classical mechanics (see for instance [1, 2] and references therein). In this work
we write down intrinsic Euler–Lagrange equations and show the appearance of a torsion term.
Furthermore, we shall see that this term should also be present in the horizontal Lagrange–
Poincaré equations considered in [1, 2], if the torsion of the chosen derivative does not vanish.

It is worth noting that covariant derivatives with non-vanishing torsion naturally arise
in several branches of physics; namely dynamics with nonholonomic constraints [3, 4],
E Cartan’s theory of gravity (see for instance [5]) and modern string theories (see for example
[6]), among others.

Let us consider a physical system with configuration manifold Q and Lagrangian
L(q, q̇) : TQ → R (for this geometrical setting, see for instance [7]).

If a coordinate-free characterization of the Euler–Lagrange equations associated with the
system is required a covariant derivative D must be introduced to TQ, for ∂L

∂q
is involved (see

for instance [8]). Once such D is chosen, DL
Dq

is defined in the standard way

DL

Dq
(q0, q̇0) = ∂

∂λ

∣∣∣∣
λ=0

L ◦ γ (λ) (1)

with γ (λ) = (q(λ), q̇0‖(λ)), q(0) = q0, q̇(0) = q̇0 and q̇0‖(λ) the parallel transport of q̇0

along q(λ).
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Moreover, an associated covariant derivative on T ∗Q, that we will also denote by D, is
naturally defined through the Leibnitz rule: for any curves α(t) and v(t) in T ∗Q and TQ,
respectively

d

dt
〈α(t), v(t)〉 =

〈
Dα(t)

Dt
, v(t)

〉
+

〈
α(t),

Dv(t)

Dt

〉
(2)

where 〈 , 〉 denotes the pairing between T ∗Q and TQ.
It is worth noting that ∂

∂q̇
has a coordinate-free sense: it is the derivative along the fibre.

Proposition 1. Let D be an arbitrary covariant derivative on TQ. Then the coordinate-free
expression of the Euler–Lagrange equations is

D

Dt

(
∂L

∂q̇

)
− DL

Dq
= ∂L

∂q̇
T (q̇(t), ) (3)

where T ( , ) is the torsion tensor of D.

Proof. The curve q(t) is a solution of the Euler–Lagrange equations if and only if it is a
critical point for the action

S =
∫ t1

t0

L(q(t), q̇(t)) dt (4)

for variations of the curves such that q0 and q1 remain fixed. That is, for each q(t, λ) :
[t0, t1] × (−ε, ε) → Q such that q(t, 0) = q(t), q(t0, λ) = q(t0) and q(t1, λ) = q(t1),

∂

∂λ

∣∣∣∣
λ=0

∫ t1

t0

L(q(t, λ), q̇(t, λ)) dt =
∫ t1

t0

δL(q(t), q̇(t)) dt = 0 (5)

where δL(q(t), q̇(t)) = ∂
∂λ

∣∣
λ=0

L(q(t, λ), q̇(t, λ)).
But

δL(q(t), q̇(t)) = lim
λ→0

L(q(t, λ), q̇(t, λ)) − L(q(t, 0), q̇(t, 0))

λ

= lim
λ→0

L(q(t, λ), q̇(t, λ)) − L(q(t, λ), q̇‖(t, λ))

λ

+ lim
λ→0

L(q(t, λ), q̇‖(t, λ)) − L(q(t, 0), q̇(t, 0))

λ
(6)

where q̇‖(t, λ) is the parallel translate of the vector q̇(t, 0) along the curve q(t, λ)|fixed t (see
figure 1).

Then

δL(q(t), q̇(t)) = ∂L

∂q̇
Dδq(t)q̇(t) +

DL

Dq
δq(t) (7)

where we have denoted

δq(t) = ∂q(t, λ)

∂λ

∣∣∣∣
λ=0

and q̇(t) = ∂q(t, λ)

∂t

∣∣∣∣
λ=0

. (8)

By definition of the torsion tensor T ( , ), we have

T (q̇(t), δq(t)) = Dq̇(t)δq(t) − Dδq(t)q̇(t) − [q̇(t), δq(t)]. (9)

Thus, by using (2) and taking into account that [q̇(t), δq(t)] vanishes, we have

δL(q(t), q̇(t)) = ∂L

∂q̇
Dq̇(t)δq(t) +

DL

Dq
δq(t) − ∂L

∂q̇
T (q̇(t), δq(t))

= d

dt

(
∂L

∂q̇
δq(t)

)
− D

Dt

(
∂L

∂q̇

)
δq(t) +

DL

Dq
δq(t)− ∂L

∂q̇
T (q̇(t), δq(t)). (10)
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q̇(t)

q̇‖(t, λ)

∂tq(t, λ)

q(t, λ)

q(t, 0) δq(t)

Figure 1. The vector q̇‖(t, λ) is the parallel transport of the vector q̇(t, 0) along the dashed curve.

Now integrating along the curve q(t) we finally get

D

Dt

(
∂L

∂q̇

)
δq(t) − DL

Dq
δq(t) = ∂L

∂q̇
T (q̇(t), δq(t)). (11)

�

Remark 1. Of course, regardless of the covariant derivative D we introduced, in any coordinate
patch the Euler–Lagrange equations always read

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (12)

Remark 2. As well known (e.g., [8] ), a torsion-free D can always be chosen. It is obvious
that for such a connection, global Euler–Lagrange equations read

D

Dt

(
∂L

∂q̇

)
− DL

Dq
= 0. (13)

So in this case, the global expression can be obtained merely by replacing the usual derivatives
by D in (12).

Remark 3. A similar result holds for the horizontal Lagrange–Poincaré equations considered
in [1, 2]. One of the goals of these references is to analyse the intrinsic meaning of motion
equations for constrained systems with symmetries. Let us recall that, in such a system, the
Lagrangian L and the constraints remain invariant under the lifting to TQ of a suitable action of
a Lie group G on Q. A connection A, related to the constraints, is introduced on the principal
bundle Q

π→ Q/G. If g̃ is the adjoint bundle to the principal bundle Q, the connection A

yields an isomorphism α between TQ/G and the Whitney sum T (Q/G) ⊕ g̃ in the following
way

αA[q, q̇]G = (x, ẋ, ṽ) = π∗(q, q̇) ⊕ [q,A(q, q̇)]G. (14)
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Now, one can define the reduced Lagrangian � : T (Q/G) ⊕ g̃ → R as

�(x, ẋ, ṽ) = L(q, q̇). (15)

A variation δq of a curve in Q is said to be horizontal if A(δq) = 0. In this case, the
corresponding variation α(δq(t)) of the curve α(q(t)) in T (Q/G) ⊕ g̃ is [1]

α(δq(t)) = δx ⊕ B̃(δx, ẋ) (16)

where B̃ is the g̃-valued two-form on Q/G defined by

B̃([q]G)(X, Y ) = [q, B(Xh(q), Y h(q))]G (17)

with Xh, Y h the horizontal lifts to Q of X and Y, and B the curvature of the connection A.
The horizontal Lagrange–Poincaré equations for L are defined as the Euler–Lagrange ones

for � restricted to horizontal variations δq. A coordinate-free version of them can be written
down by introducing an arbitrary covariant derivative D on T (Q/G) and using the covariant
derivative D̃ induced by A on g̃.

Under the implicit assumption that the torsion of D vanishes, it is shown in [1, 2] that, for
horizontal variations δq,

δ

∫ t1

t0

L(q(t), q̇(t)) dt = 0 (18)

if and only if the following horizontal Lagrange–Poincaré equations hold

D

Dt

(
∂�

∂ẋ

)
(x, ẋ, ṽ) − D�

Dx
(x, ẋ, ṽ) = −

〈
∂�

∂ṽ
, B̃(x)(ẋ, .)

〉
. (19)

It is easy to see that, for an arbitrary covariant derivative D on T (Q/G), its torsion tensor
T must be taken into account in the previous equations. Arguing as above one gets

D

Dt

(
∂�

∂ẋ

)
(x, ẋ, ṽ) − D�

Dx
(x, ẋ, ṽ) = −

〈
∂�

∂ṽ
, B̃(x)(ẋ, .)

〉
+ T (q̇, .). (20)

Assuming as in [1, 2] the torsion-free requirement for D, the last term clearly vanishes
and we recover the horizontal Lagrange–Poincaré equations found in those references.

Again, in any coordinate patch, the expression of horizontal Lagrange–Poincaré equations
is independent of the choice of the covariant derivative D.

Remark 4. When considered as a map of the second-order tangent bundle T (TQ) to T∗Q, the
Euler–Lagrange operator turns out to be intrinsic without any choice of connection ( e.g., [9]).
The need for connections appears if one prefers to stay in the framework of tangent bundles,
as it is usually done, and not to deal with second-order ones.
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